Climate change brings new challenges for agriculture and society, also in our region, the Upper Rhine. For instance, drought and heat give rise to new diseases, such as the Esca syndrome in viticulture. But our plant world also suffers outside of agriculture: neophytic weeds outcompete our native plants, and in our cities and forests, trees are affected by fungal parasites. Some have spread due to globalisation, but others had always been here. When their host plant suffers from climate stress, they turn from harmless inhabitants into vicious killers.
We search new ways to protect our plants. Rather than poisoning fungal pathogens and weeds with fungicides or herbicides, we want to make use of chemical communication. Nature has evolved numerous chemical signals to steer and manipulate the interaction between organisms. These signals are specific, efficient, and have a favourable ecological footprint.
To identify and valorise these signals, we have assembled a multidisciplinary consortium harbouring plant science, fungal genetics, chip technology, organic chemistry, and agroscience. Using a „ecosystem on chip“ strategy, we will screen natural biodiversity for new compounds to develop new plant protection strategies that are sustainable, because they are rooted in biological evolution.